Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis.

نویسندگان

  • Irene Murgia
  • Massimo Delledonne
  • Carlo Soave
چکیده

Nitric oxide (NO) is a signaling molecule that plays a critical role in the activation of innate immune and inflammatory responses in animals. During the last few years, NO has also been detected in several plant species and the increasing number of reports on its function in plants have implicated NO as an important effector of growth, development and defense. Analogously to animals, NO has been recently shown to inhibit tobacco aconitase. This suggests that NO may elevate free iron levels in the cells by converting tobacco cytoplasmic aconitase into a mRNA binding protein that negatively regulates accumulation of ferritin. We investigated the possible role of NO as a regulator of ferritin levels in Arabidopsis and found that the NO-donor sodium nitroprusside (SNP) induces accumulation of ferritin both at mRNA and protein level. Iron is not necessary for this NO-mediated ferritin transcript accumulation, since SNP is still able to induce the accumulation of ferritin transcript in Arabidopsis suspension cultures pre-treated with the iron chelants DFO or ferrozine. However, NO is required for iron-induced ferritin accumulation, as the NO scavenger CPTIO prevents ferritin transcript accumulation in Arabidopsis suspension cultures treated with iron. The pathway is ser/thr phosphatase-dependent and necessitates protein synthesis; furthermore, NO mediates ferritin regulation through the IDRS sequence of the Atfer1 promoter responsible for transcriptional repression under low iron supply. NO, by acting downstream of iron in the induction of ferritin transcript accumulation is therefore a key signaling molecule for regulation of iron homeostasis in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection.

Ferritins are multimeric iron storage proteins encoded by a four-member gene family in Arabidopsis (AtFer1-4). To investigate whether iron sequestration in ferritins is a part of an iron-withholding defense system induced in response to bacterial invasion, we used Arabidopsis thaliana as a susceptible host for the pathogenic bacterium Erwinia chrysanthemi. In this study, we used a T-DNA inserti...

متن کامل

Nitric oxide-mediated induction of ferritin synthesis in J774 macrophages by inflammatory cytokines: role of selective iron regulatory protein-2 downregulation.

Cytokine-treated macrophages represent a useful model to unravel the molecular basis of reticuloendothelial (RE) iron retention in inflammatory conditions. In the present study, we showed that stimulation of murine macrophage J774 cells with interferon (IFN)-gamma/lipopolysaccharide (LPS) resulted in a nitric oxide-dependent modulation of the activity of iron regulatory proteins (IRP)-1 and 2, ...

متن کامل

Interleukin lf Induces the Formation of Nitric Oxide by / - cells Purified from Rodent Islets of Langerhans

Introduction Nitric oxide has recently been implicated as the effector molecule that mediates IL-1(3-induced inhibition of glucose-stimulated insulin secretion and (3-cell specific destruction. The pancreatic islet represents a heterogeneous cell population containing both endocrine cells ((3-linsulin], a-[glucagonJ, -yIsomatostatini, and PP-[polypeptideI secreting cells) and nonendocrine cells...

متن کامل

PIF3 Is Involved in the Primary Root Growth Inhibition of Arabidopsis Induced by Nitric Oxide in the Light

PHYTOCHROME INTERACTING FACTOR3 (PIF3) is an important component in the phytochrome signaling pathway and mediates plant responses to various environmental conditions. We found that PIF3 is involved in the inhibition of root growth of Arabidopsis thaliana seedlings induced by nitric oxide (NO) in light. Overexpression of PIF3 partially alleviated the inhibitory effect of NO on root growth, wher...

متن کامل

Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide

Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana. In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2002